skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brandl, Collin C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Queen Charlotte plate boundary (QCPB), a transform separating the Pacific and North American plates, accommodates ~55 millimeters per year of motion, is a source of large earthquakes in the northeast Pacific, and may be a modern site of subduction initiation. The southern QCPB experiences oblique convergence, showcased by the 1949 magnitude (M) 8.1 strike-slip earthquake and the 2012M7.8 tsunamigenic thrust earthquake, both offshore Haida Gwaii, British Columbia. We present seismic reflection images of the southern QCPB, which constrain the crustal structure in unprecedented detail. The Queen Charlotte Terrace is underthrust by oceanic crust topped by a throughgoing, low-angle plate-boundary thrust, which ruptured in the 2012 earthquake. The Queen Charlotte Terrace is analogous to strain-partitioned, thin-skinned forearc slivers seen at oblique subduction zones, captured between a localized plate-boundary thrust and a mature strike-slip fault. Our imaging suggests that the system rapidly evolved from distributed to partitioned strain and is currently an incipient subduction zone. 
    more » « less
    Free, publicly-accessible full text available July 18, 2026
  2. Abstract Plate boundaries in the oceans are often poorly monitored. Though typically less remote than the deep sea, shallow marine environments with seafloor depths <0.5 km can be especially challenging for seismic experiments due to natural and anthropogenic hazards and noise sources that can affect instrument survival and data quality. The Queen Charlotte fault (QCF) is part of a transform plate boundary that follows the continental shelf of the Alaska Panhandle and central British Columbia. This fault system accommodates dextral slip between the Pacific and North American plates and has hosted several historic Mw > 7 earthquakes. In August 2021, we deployed 28 broadband ocean-bottom seismometers (OBSs) along the central QCF for the “Transform Obliquity along the Queen Charlotte Fault and Earthquake Study” (TOQUES) to investigate fault architecture and local seismicity. Deployment depths varied between 0.2 and 2.5 km below sea level, with half of the instruments deployed in shallow water (<0.5 km depth). We describe the scientific motivations for the TOQUES broadband OBS array, present data metrics, and discuss factors that influence data quality and instrument survival. We show that many opportunities exist for scientific study of shallow marine environments and the solid earth. Despite concerns that shallow water was responsible for the risk of data or instrument loss, direct relationships between instrument success and water depth are inconclusive. Rather, instrument success may be more related to the ability of different instrument designs to withstand shallow-water conditions. 
    more » « less
    Free, publicly-accessible full text available March 5, 2026
  3. Abstract Detailed models of crustal structure at volcanic passive margins offer insight into the role of magmatism and the distribution of igneous addition during continental rifting. The Eastern North American Margin (ENAM) is a volcanic passive margin that formed during the breakup of Pangea ∼200 Myr ago. The offshore, margin‐parallel East Coast Magnetic Anomaly (ECMA) is thought to mark the locus of syn‐rift magmatism. Previous widely spaced margin‐perpendicular studies seismically imaged igneous addition as seaward dipping reflectors (SDRs) and high velocity lower crust (HVLC; >7.2 km/s) beneath the ECMA. Along‐strike imaging is necessary to more accurately determine the distribution and volume of igneous addition during continental breakup. We use wide‐angle, marine active‐source seismic data from the 2014–2015 ENAM Community Seismic Experiment to determine crustal structure beneath a ∼370‐km‐long section of the ECMA. P‐wave velocity models based on data from short‐period ocean bottom seismometers reveal a ∼21‐km‐thick crust with laterally variable lower crust velocities ranging from 6.9 to 7.5 km/s. Sections with HVLC (>7.2 km/s) alternate with two ∼30‐km‐wide areas where the average velocities are less than 7.0 km/s. This variable structure indicates that HVLC is discontinuous along the margin, reflecting variable amounts of intrusion along‐strike. Our results suggest that magmatism during rifting was segmented. The HVLC discontinuities roughly align with locations of Mid‐Atlantic Ridge fracture zones, which may suggest that rift segmentation influenced later segmentation of the Mid‐Atlantic Ridge. 
    more » « less